ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Looking ahead: The 2025 ANS Winter Conference & Expo
With the months rolling by, the time is coming for the American Nuclear Society to hold its second annual conference of the year. The 2025 ANS Winter Conference & Expo, with a theme of “Building the Nuclear Century,” will take place November 9–12 in Washington, D.C., at the Washington Hilton.
Yuzo Fukai
Nuclear Science and Engineering | Volume 13 | Number 4 | August 1962 | Pages 345-354
Technical Paper | doi.org/10.13182/NSE62-A26176
Articles are hosted by Taylor and Francis Online.
In calculating a closely packed lattice, it is well known that one-velocity integral transport theory is the most useful method. Results are briefly presented for calculation of the ratio of moderator to fuel flux in a lattice, , by first and second approximations which have been developed by Corngold. In order to compare these approximations with various other calculating methods, some approximate formulations of a penetrability factor are discussed. After comparing the numerical results from the first and second approximations with the ones of Wachspress, Amouyal, Bengston, and the blackness method, the second approximation is considered to be the best. Consequently the values of the flux ratio in a lattice of fuel cylinders are calculated by using a unit cell method, and the second approximation in the case of a slab lattice which has a mean chord length equivalent to that of the actual lattice, and the results are compared with experiment.