ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
B. Grimeland, S. Messelt, L. Sund
Nuclear Science and Engineering | Volume 13 | Number 3 | July 1962 | Pages 261-263
Technical Paper | doi.org/10.13182/NSE62-A26161
Articles are hosted by Taylor and Francis Online.
Neutrons from a D(d, n)He3 neutron source, operating with 150 kev deuterons, were slowed down in blocks of paraffin wax. The distribution of 1.44 ev neutrons was measured with indium foils in five blocks of various dimensions, all facing the target with one of their end planes. The distribution was approximately the same in all blocks with thickness equal to or larger than 22 cm, which is about four times the slowing-down length in paraffin for (D, D) neutrons slowed down to 1.44 ev. Measurements were also made in a block of dimensions 50 x 50 x 100 cm3 with the target at the center. Even here the distribution of 1.44 ev neutrons was nearly the same as in the blocks already mentioned. The slowing-down age for (D, D) neutrons to 1.44 ev in paraffin wax, measured in the direction of the incoming deuteron beam, was found to be (33.0 ± 1.3) cm3.