ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. Ciechanowicz
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 75-79
Technical Paper | doi.org/10.13182/NSE62-A26136
Articles are hosted by Taylor and Francis Online.
The partial differential equations describing thermal processes in the reactor core are solved with respect to the coolant temperature in two cases: (1) when the fuel element temperature is averaged over the fuel element cross sectional area, (2) when the temperature distribution in this cross section is taken into account. It is assumed that the fuel element is of the rod type, there is no conduction in the longitudinal direction, and the inlet coolant temperature is a constant. The results obtained as solutions of these equations are discussed from the point of view of the application of an analogue computer to the exact simulation of thermal processes in the reactor core.