ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
W. Ciechanowicz
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 75-79
Technical Paper | doi.org/10.13182/NSE62-A26136
Articles are hosted by Taylor and Francis Online.
The partial differential equations describing thermal processes in the reactor core are solved with respect to the coolant temperature in two cases: (1) when the fuel element temperature is averaged over the fuel element cross sectional area, (2) when the temperature distribution in this cross section is taken into account. It is assumed that the fuel element is of the rod type, there is no conduction in the longitudinal direction, and the inlet coolant temperature is a constant. The results obtained as solutions of these equations are discussed from the point of view of the application of an analogue computer to the exact simulation of thermal processes in the reactor core.