ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
I. Bardez, D. Caurant, J. L. Dussossoy, P. Loiseau, C. Gervais, F. Ribot, D. R. Neuville, N. Baffier, C. Fillet
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 272-284
Technical Paper | doi.org/10.13182/NSE06-A2613
Articles are hosted by Taylor and Francis Online.
New nuclear highly durable glass compositions, able to immobilize a higher concentration of high-level nuclear wastes than current borosilicate nuclear glasses, are being studied. Investigations are performed on rare earth (RE)-rich glasses, known as durable matrices. After a preliminary study on complex and simplified compositions, a basic glass composition was selected and studied (wt%): 51.0 SiO2-8.5 B2O3-12.2 Na2O-4.3 Al2O3-4.8 CaO-3.2 ZrO2-16.0 RE2O3. Chemical durability, physical properties (viscosity, transformation temperature), and crystallization tendency of glasses containing either a mixture of RE (La + Ce + Pr + Nd) or only one RE were studied and compared. The local environment of RE (for RE = Nd) in the glass and its evolution according to Nd2O3 concentration (from 1.3 to 30 wt%) was also studied by coupling characterization methods such as extended X-ray absorption fine structure spectroscopy at the neodymium LIII-edge and optical absorption spectroscopy. 11B, 27Al magic angle spinning-nuclear magnetic resonance, and Raman spectroscopy were also used to study glass structure.