ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
I. Bardez, D. Caurant, J. L. Dussossoy, P. Loiseau, C. Gervais, F. Ribot, D. R. Neuville, N. Baffier, C. Fillet
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 272-284
Technical Paper | doi.org/10.13182/NSE06-A2613
Articles are hosted by Taylor and Francis Online.
New nuclear highly durable glass compositions, able to immobilize a higher concentration of high-level nuclear wastes than current borosilicate nuclear glasses, are being studied. Investigations are performed on rare earth (RE)-rich glasses, known as durable matrices. After a preliminary study on complex and simplified compositions, a basic glass composition was selected and studied (wt%): 51.0 SiO2-8.5 B2O3-12.2 Na2O-4.3 Al2O3-4.8 CaO-3.2 ZrO2-16.0 RE2O3. Chemical durability, physical properties (viscosity, transformation temperature), and crystallization tendency of glasses containing either a mixture of RE (La + Ce + Pr + Nd) or only one RE were studied and compared. The local environment of RE (for RE = Nd) in the glass and its evolution according to Nd2O3 concentration (from 1.3 to 30 wt%) was also studied by coupling characterization methods such as extended X-ray absorption fine structure spectroscopy at the neodymium LIII-edge and optical absorption spectroscopy. 11B, 27Al magic angle spinning-nuclear magnetic resonance, and Raman spectroscopy were also used to study glass structure.