ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
F. Jorion, X. Deschanels, T. Advocat, F. Desmouliere, J. N. Cachia, S. Peuget, D. Roudil, G. Leturcq
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 262-271
Technical Paper | doi.org/10.13182/NSE06-A2612
Articles are hosted by Taylor and Francis Online.
Zirconolite is a potential matrix for the immobilization of the minor actinides: neptunium, curium, americium, and small quantities of unrecyclable plutonium, produced by the reprocessing of the spent fuel.In order to check the incorporation of actinides into the structure, zirconolite ceramic pellets doped with 10 wt% of 239PuO2 were sintered. Characterization by scanning electron microscopy, X-ray diffraction, and X-ray Absorption Near-Edge Structure (XANES) spectroscopy have been done on this material. The microstructure of the pellets is homogeneous, and their relative density is higher than 90% of the theoretical density. XANES spectroscopy shows that Pu is at oxidation state (IV) in this material.To investigate the effects of radiation damage on zirconolite structure, pellets doped with 10 wt% of 238PuO2 were fabricated. 238Pu accelerates the radiation damage relative to the 239Pu because of its much higher specific activity (632 × 109 Bq/g for 238Pu versus 2.2 × 109 Bq/g for 239Pu). Some pellets are stored at ambient, 250 and 500°C. Up to 2.2 × 1018 g-1, macroscopic swelling of the samples stored at ambient is ~2.2%/1018 g-1, and the microscopic one near 1.3%/1018 g-1. Some microcracks are observed on these pellets. The samples started to become amorphous at 2.2 × 1018 g-1. The swelling strongly decreases with the storage temperature of the samples.Swelling results are interpreted in terms of alpha radiation damage on the structure; at this time helium accumulation does not appear to have a major role in this process.