ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Olivier Conocar, Nicolas Douyere, Jean-Paul Glatz, Jérôme Lacquement, Rikard Malmbeck, Jérôme Serp
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 253-261
Technical Paper | doi.org/10.13182/NSE06-A2611
Articles are hosted by Taylor and Francis Online.
Thermodynamic calculations have shown that aluminum is the most promising metallic solvent or support for the separation of actinides (An) from lanthanides (Ln). In molten fluoride salt, the technique of reductive extraction is under development in which the separation is based on different distributions of An and Ln between the salt and metallic Al phases. In this process molten aluminum alloy acts as both a reductant and a solvent into which the actinides are selectively extracted. It was demonstrated that a one-stage reductive extraction process, using a concentrated solution, allows a recovery of more than 99.3% of Pu and Am. In addition excellent separation factors between Pu and Ln well above 103 were obtained. In molten chloride media similar separations are developed by constant current electrorefining between a metallic alloy fuel (U60Pu20-Zr10Am2Nd3.5Y0.5Ce0.5Gd0.5) and an Al solid cathode. In a series of demonstration experiments, almost 25 g of metallic fuel was reprocessed and actinides collected as An-Al alloys on the cathode. Analysis of the An-Al deposits confirmed that an excellent An/Ln separation (An/Ln mass ratio = 2400) had been obtained. These results show that Al is a very promising material to be used in pyrochemical reprocessing of actinides.