ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Melvin M. Levine, Meyer Steinberg
Nuclear Science and Engineering | Volume 12 | Number 4 | April 1962 | Pages 498-504
Technical Paper | doi.org/10.13182/NSE62-A26097
Articles are hosted by Taylor and Francis Online.
A general solution for optimum design of a radiaton chemical reaction vessel having an internal uniform triangular array of long, thin γ-ray sources is derived. The dependence of chemical production rate on amount and distribution of radioactive material and on size and shape of vessel is accounted for. Values for two general design parameters (vessel efficiency, ψ, and unit cell efficiency, µ) as a function of the vessel diameter and source spacing are given and include radiation buildup. The rate equation expressed as a power law of the radiation intensity is combined with information on the dependence of cost of reactor vessel on volume and pressure. The total cost of source material and vessels is then minimized to determine optimum size and number of vessels and the number of curies of radiation. The rate and cost equations are applied to the radiation polymerization of ethylene. By the methods outlined here it is possible to determine the parameters of an optimum irradiation assembly. The dimensions of the vessel and source array and the quantity of radioactive source material necessary for a given rate of production are determined for the minimum cost condition.