ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Jerome L. Shapiro
Nuclear Science and Engineering | Volume 12 | Number 4 | April 1962 | Pages 449-456
Technical Paper | doi.org/10.13182/NSE62-A26090
Articles are hosted by Taylor and Francis Online.
An experimental and analytical study of the void coefficient of reactivity in the Ford Nuclear Reactor (a fully enriched, swimming pool type) has been completed. A stream of air bubbles was used to introduce voids. Out-of-pile calibration of the air flow system was necessary to account for variation in bubble rise velocity with average air concentration. This method is extremely simple except for the calibration procedure. With the results presented in this paper, the void coefficients of other reactors with similar fuel elements (18 plate, BSR type) can be measured without the necessity for recalibration. For the calculation of uniformly distributed void coefficients, relatively simple two-group diffusion theory is shown to be accurate provided the variation of leakage in all three dimensions is taken into account. This variation of leakage is computed by the use of a buckling iterative procedure. Second order effects, such as the variation of effective thermal neutron temperature and disadvantage factor, may be neglected. For the calculation of localized void effects, the buckling iteration method is inaccurate due to the nonseparability of axial and radial flux distribution in this small core. To improve the accuracy an extension of this method to several region iteration is suggested. The principal value of this type of calculation is the short computer time required.