ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Alan B. Rothman, Charles E. W. Ward
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 293-300
Technical Paper | doi.org/10.13182/NSE62-A26070
Articles are hosted by Taylor and Francis Online.
A new measurement of the effective resonance integral of thorium metal has been made, using reactor oscillator techniques. Fluctuations in reactor power level, caused by oscillation of cadmium-shielded cylindrical samples, were recorded on a strip chart. The signal was Fourier-analyzed, and the coefficient of the fundamental mode determined. For a constant shape reactivity input, the value of this coefficient for each sample is proportional to the effective resonance integral of the sample. The scattering effects of the thorium were determined by oscillating identical samples of lead, and were deducted from the results for the thorium. Absolute calibration of the oscillator measurements was provided by oscillating several dilute solutions of each of three standard absorbers : boron, indium, and gold. The effective resonance integrals of the thorium cylinders were then found to be given by the formula: where S/M is the surface-to-mass ratio of the samples in cm2/gm. The 1/v component of the resonance integral, 3.6 barns, has been removed from the first term of this formula.