ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. R. L. de Ladonchamps, L. M. Grossman
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 238-242
Technical Paper | doi.org/10.13182/NSE62-A26063
Articles are hosted by Taylor and Francis Online.
The space energy distribution of neutrons diffusing in a source-free, nonabsorbing medium possessing a temperature gradient is obtained by solving the appropriate Boltzmann equation to a second order approximation using the expansion technique of Chapman and Enskog. The medium is assumed to possess a locally Maxwellian energy distribution and the neutron scattering is taken to be isotropic in the laboratory system of coordinates. It is found that the neutron current is increased in the direction of a negative temperature gradient and the “thermal diffusion” transport coefficient is evaluated as a function of the mass of the moderator nuclei. For the case of infinite mass nuclei, the results correspond to the kinetic theory model of a Knudsen gas in a binary Lorentzian gas mixture. An analysis of the results is carried out in the framework of the thermodynamic theory of coupled irreversible processes.