ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
J. R. L. de Ladonchamps, L. M. Grossman
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 238-242
Technical Paper | doi.org/10.13182/NSE62-A26063
Articles are hosted by Taylor and Francis Online.
The space energy distribution of neutrons diffusing in a source-free, nonabsorbing medium possessing a temperature gradient is obtained by solving the appropriate Boltzmann equation to a second order approximation using the expansion technique of Chapman and Enskog. The medium is assumed to possess a locally Maxwellian energy distribution and the neutron scattering is taken to be isotropic in the laboratory system of coordinates. It is found that the neutron current is increased in the direction of a negative temperature gradient and the “thermal diffusion” transport coefficient is evaluated as a function of the mass of the moderator nuclei. For the case of infinite mass nuclei, the results correspond to the kinetic theory model of a Knudsen gas in a binary Lorentzian gas mixture. An analysis of the results is carried out in the framework of the thermodynamic theory of coupled irreversible processes.