ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
W. M. Lopez, J. R. Beyster
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 190-202
Technical Paper | doi.org/10.13182/NSE62-A26058
Articles are hosted by Taylor and Francis Online.
Neutron diffusion parameters in water have been measured at 26.7°C with the pulsed neutron technique. The results are 210 ± 1 µsec for the neutron mean lifetime, 37,503 ± 366 cm2 sec−1 for the average diffusion coefficient, and 5116 ± 776 cm4 sec−1 for the diffusion cooling constant. From these values the thermal absorption cross section of hydrogen and the thermal diffusion length in water can be inferred to be 325 ± 2 mb and 2.83 ± 0.02 cm, respectively. With a pulsed high-intensity neutron source provided by an electron linear accelerator, neutron lifetime measurements were performed on small and large water samples with values of the geometrical buckling from 0.014 cm−2 to 0.59 cm−2. Effects of harmonic modes in the large water geometries, which were determined by measurements of the time-dependent spatial flux distributions resulting from an external pulsed source of fast neutrons, were found to be adequately predictable with simple diffusion theory.