ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Karl H. Puechl
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 135-150
Technical Paper | doi.org/10.13182/NSE62-A26051
Articles are hosted by Taylor and Francis Online.
The potential of plutonium as a fuel in near-thermal converter reactors is investigated. Over certain ranges of fuel loading and/or moderation, it is shown that the effective absorption cross section (averaged over the entire neutron spectrum) of Pu240 decreases with fuel burnup; i.e., decreases with the associated softening of the neutron spectrum. The plutonium, therefore, behaves as a self-stabilizing or self-compensating fuel with the decrease in Pu240 cross section balancing fissionable material burnup and fission product build-up. Thereby long core lives are attainable with nominal shim control requirements. The strong neutron temperature dependence of the effective Pu240 absorption cross section also results in a highly negative temperature coefficient of reactivity and thereby in the feasibility of spectral shift shim control. Economics evaluation indicates that fuel cycle costs of between 1.5 and 2.5 mills/kw-hr may be attainable with these plutonium fueled systems.