ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taro Ueki, Brian R. Nease
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 184-191
Technical Paper | doi.org/10.13182/NSE05-15
Articles are hosted by Taylor and Francis Online.
The performances of autoregressive processes and the autoregressive moving average process of order two and one [ARMA(2,1)] have been investigated concerning the confidence interval estimation in Monte Carlo eigenvalue calculation. Two reasons exist for these model choices. First, the Wold decomposition states that any zero-mean stationary stochastic process can be expressed as the sum of a deterministic process and a moving average process of infinite order. This justifies the application of autoregressive fitting and autoregressive moving average fitting to a centered k-effective series from stationary iteration cycles. Second, ARMA(2,1) fitting is a logically natural refinement of first-order autoregressive fitting since the noise propagation in iterated source methods can be reduced to an autoregressive moving average model of orders p and p - 1 [ARMA(p, p - 1)]. Numerical results are presented for the "k-effective of the world" problem. The results indicate that ARMA(2,1) fitting performs much better than the autoregressive fitting of low orders. Also presented are some related theoretical results; MacMillan's formula to confidence limits can be derived from the ARMA(p, p - 1) representation of source distribution; and the multiplicity of higher eigenmodes can make the decay of the autocorrelation of source distribution much different than predicted by the sum of exponential terms. The latter result indicates poor performance that time series methods would exhibit for the confidence interval estimation of the fission rate distribution in the critical reactor with symmetric component placement.