ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. M. Pearce
Nuclear Science and Engineering | Volume 11 | Number 3 | November 1961 | Pages 328-337
Technical Paper | doi.org/10.13182/NSE61-A26012
Articles are hosted by Taylor and Francis Online.
The spatial flux oscillations that may occur in a power reactor as a result of xenon and local temperature effects have been studied on a general-purpose electrical analog computer. The linearized forms of the two-group diffusion equations with xenon-dependent coefficients are solved in one dimension using finite space intervals. The xenon-dependent coefficients are obtained at each space point by solving the linearized forms of the iodine and xenon equations using continuous integration, one second of computer time representing one hour of reactor time. Thus at each space point four operational amplifiers are required—one each for iodine, xenon, fast flux, and slow flux. The present application has ten space points on a radius, or on the half-thickness of a slab, requiring 40 amplifiers and 80 potentiometers. Good agreement is obtained with modal theory for predictions of the threshold fluxes in simple cases. Unlike some applications of modal theory, it is not assumed in the case of a persisting or pure mode that each of the oscillating variables is the product of a real function of space and a function of time. In fact it is found that the space shape changes continually during a cycle of an infinite train of oscillations, this behavior repeating in every cycle. This is partly a result of the xenon's lifetime against burnup varying through the reactor. The change of shape is less marked for the flux and iodine than for the xenon, and is most marked in the case of high equilibrium flux. At a central flux of 2.1 × 1014 cm−2 sec−1, the maxima in the xenon occur 2.5 hr later at the outside of a cylinder or of a slab than at the center. Some examples of two-group mode shapes are also given for reflected and flattened reactors.