ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Marzio Marseguerra, Enrico Zio, Raffaele Canetta
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 124-136
Technical Paper | doi.org/10.13182/NSE06-A2600
Articles are hosted by Taylor and Francis Online.
For realistic systems, a dynamic approach to reliability analysis is likely to require a significant increase in the computational efforts, due to the need of integrating the dynamic evolution with its characteristic times. Thus, it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data.In this paper we propose a multiobjective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry-based Reactor Kinetics (QUARK) code available from the Nuclear Energy Agency, and the simplified model is based on the point-kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. The (pseudo)measured quantities of interest are the reactor power and the average fuel temperature.