ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Chuk-Ching Ma
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 19-25
Technical Paper | doi.org/10.13182/NSE61-A25979
Articles are hosted by Taylor and Francis Online.
Studies have been made for the application of liquid poisons in lieu of moving control rods for shim control of core reactivity. Liquid control is achieved by: (1) injection of neutron-absorbing poison into the system from a poison supply tank if lower core reactivity is desired; (2) removal of a certain percentage of neutron-absorbing poison from the system by ion exchange if higher core reactivity is required; (3) no poison is added to or subtracted from the system if no reactivity change is desired. There is a wide choice of absorbers which could absorb neutrons in the thermal and epithermal ranges because most of the nitrates of these absorbers are soluble. Nitrate or other salts of cadmium, europium, or gadolinium are suggested for absorbing thermal neutrons, while silver, indium, or hafnium salts are used for the removal of resonance neutrons. A mixed solution containing one or more of these salts in any desired ratio can be prepared according to the need of a particular reactor. Boric acid can also be used. The principal advantages of using chemical poisons are: (a) lower capital cost; (b) simpler maintenance; (c) ready control of large reactivities; and (d) elimination of rod hot-spot factors. The liquid control system under consideration was studied for its applicability to nuclear rocket reactor control, although it might also be feasible for the control of ordinary power reactors with certain modifications.