ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. S. Trasi
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 240-246
Technical Paper | doi.org/10.13182/NSE61-A25967
Articles are hosted by Taylor and Francis Online.
The critical condition is obtained for a system consisting of a ring of N equally spaced identical cylindrical rods in a reflected cylindrical reactor. The fluxes in each region are expressed in terms of a Fourier Series expansion of the angular dependence of the flux about each rod. The imposition of the boundary conditions gives a set of linear homogeneous equations, from which the critical determinant is deduced. Matrix theory is used throughout, which facilitates the treatment of the problem, and which in the case of a bare reactor provides a method of elimination of constants alternative to that given by Avery. The derivation is also valid for a system containing a ring of N multiplying or nonmultiplying zones. A little modification of this theory leads, without difficulty, to the solution of the problem of a ring of N control rods, which are “black” to thermal neutrons.