ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Viktoriya V. Kulik, John C. Lee
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 69-89
Technical Paper | doi.org/10.13182/NSE06-A2596
Articles are hosted by Taylor and Francis Online.
The presence of a localized spallation source in an accelerator-driven subcritical system leads to significant spatial variations in the power distribution and invalidates the simple point-kinetics approach. To eliminate higher-harmonics contamination in the detector response and to account properly for spatial and spectral effects in reactivity determination, a method directly combining measurements with numerical simulations of the experimental data is developed through a quasi-static formulation. The method provides space-time correction to a variety of traditional point-kinetics techniques and determines the reactivity essentially independent of the detector position, as long as sufficiently accurate information on the reactor configuration is provided. In the current work, the space-time corrections are derived for two well-known point-kinetics methods: area-ratio technique and -method. Numerical simulations performed with the FX2-TH diffusion theory code along with a space-time analysis of MUSE-4 pulsed source experimental data illustrate the applicability of the proposed methods for the determination of significant subcriticality levels in fast and thermal reactor systems.