ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Viktoriya V. Kulik, John C. Lee
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 69-89
Technical Paper | doi.org/10.13182/NSE06-A2596
Articles are hosted by Taylor and Francis Online.
The presence of a localized spallation source in an accelerator-driven subcritical system leads to significant spatial variations in the power distribution and invalidates the simple point-kinetics approach. To eliminate higher-harmonics contamination in the detector response and to account properly for spatial and spectral effects in reactivity determination, a method directly combining measurements with numerical simulations of the experimental data is developed through a quasi-static formulation. The method provides space-time correction to a variety of traditional point-kinetics techniques and determines the reactivity essentially independent of the detector position, as long as sufficiently accurate information on the reactor configuration is provided. In the current work, the space-time corrections are derived for two well-known point-kinetics methods: area-ratio technique and -method. Numerical simulations performed with the FX2-TH diffusion theory code along with a space-time analysis of MUSE-4 pulsed source experimental data illustrate the applicability of the proposed methods for the determination of significant subcriticality levels in fast and thermal reactor systems.