ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
N. Tralli, J. Agresta
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 132-141
Technical Paper | doi.org/10.13182/NSE61-A25949
Articles are hosted by Taylor and Francis Online.
The spherical harmonic (P3) approximation to the Boltzmann equation is applied to the case of a finite cylinder, with symmetry about the axis of the cylinder. Solutions are obtained for the case of a neutron source proportional to cos Bzz where z is measured along the axis of the cylinder and Bz2 is the axial buckling. These solutions are then expanded in terms of Bz and only terms of order Bz2 or less are retained. The approximate solutions are then used to calculate the thermal utilization of a cell of finite height composed of a natural uranium rod surrounded by a D2O moderator as a function of the axial buckling. The resultant expression for the utilization has the form where f(0) is the utilization of the cell of infinite height and the constant L2 corresponds to the thermal diffusion area in two-group theory. Results are obtained for several cells and compared with those obtained using other calculational methods.