ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
C. W. Maynard
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 97-101
Technical Paper | doi.org/10.13182/NSE61-A25945
Articles are hosted by Taylor and Francis Online.
In solving two-dimensional one-energy transport problems, it is often necessary to utilize Monte Carlo calculations in situations where this technique converges very slowly. In problems with regionwise constant sources where the required result is the flux at a point or an integral of the flux over a region or surface, the reciprocity theorem can be used to determine an auxiliary problem which yields the same information while in many cases improving the statistics appreciably. The relations required in choosing the auxiliary problem are derived. The required integrals and statistical errors are stated in terms of the results for the auxiliary problem. Examples are given to illustrate the application of these ideas to a flux peaking situation and to the absorption in a small region. The extension of this procedure to energy-dependent cases is discussed briefly.