ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
S. K. Penny, C. D. Zerby
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 75-82
Technical Paper | doi.org/10.13182/NSE61-A25933
Articles are hosted by Taylor and Francis Online.
The conditional Monte Carlo method of sampling has been applied to the spatial part of the gamma-ray transport problem in an infinite medium for the purpose of evaluating its general usefulness and its applicability to deep penetration problems. A simplified derivation of the application is presented, and the results of calculations for a water medium and a lead medium are shown. The calculations indicate that the conditional Monte Carlo method, as used in this application and without the aid of other special techniques, gives reasonably good results in a physical deep penetration problem out to approximately 10 mean free paths penetration distance independent of the absorbing properties of the material and can be carried out to 20 mean free paths if some inaccuracy can be tolerated.