ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. K. Kuroda, M. P. Menon
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 70-74
Technical Paper | doi.org/10.13182/NSE61-A25932
Articles are hosted by Taylor and Francis Online.
The occurrence of a number of fission products in pitchblende and in nonirradiated natural and depleted U salts with 10-4 dis/sec/g-U, was recently reported by Kuroda and co-workers. The following nuclides were detected: Sr89, 90, 91, 92, Mo99, I131, 132, 133, 134, 135, and Ba140. These fission products are formed predominantly by the spontaneous fission of U238, and it is possible to obtain the general shape of the mass-yield curve for the spontaneous fission of U238 from the equilibrium activities of the fission products found in nonirradiated U salts. The spontaneous fission half-life of U238 can also be calculated from these data. Radiochemical procedures have been developed for the determination of each fission product, in which a quantity ranging from 0.1 to 1 disintegration/sec of the fission product activity is isolated from kilogram quantities of U salts, purified, and then counted. Where the half-life of the fission product was several months, U minerals instead of U salts, were used. Removal of the bulk of the U by a liquid extraction method was found to be necessary and/or advantageous in most cases, although it was possible to precipitate certain fission products directly from a concentrated solution of the U salts. A new procedure is currently under investigation for the isolation and quantitative determination of the isotopes of Ce by a liquid-liquid extraction method. Ce(IV) can be extracted from a 10 M HNO3 solution by a 1 to 4 mixture of TBP and CCl4 with high extraction efficiency, and further purified by a combination of oxidation-reduction and liquid-liquid extraction procedures.