ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
W. Baer
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 57-60
Technical Paper | doi.org/10.13182/NSE61-A25930
Articles are hosted by Taylor and Francis Online.
A measurement of the epithermal radiative capture in U238 has been carried out in a natural UO2-fueled blanket cluster of the nuclear mock-up of PWR Core 1. Analysis indicates that a substantial increase (∼20%) in epithermal captures in a natural uranium metal plate fuel cluster should occur in the fuel elements adjacent to a wide intercluster water channel. The experiment shows that the captures in a cylindrical UO2 fuel element at the edge of the bundle is only 7% greater than in a neighboring fuel element. However, the radial distribution of captures in the first fuel rod shows that the captures near the wide intercluster water channel are 65% greater than at an equivalent position on the side of the rod away from the water channel. Calculations of the relative epithermal U238 captures in the cluster have shown that diffusion theory predicts the spatial dependence of the captures in the interior of the cluster but fails near the edge of the bundle. Monte Carlo analysis confirms the observed increase in the captures in a fuel rod at the edge of the bundle, although the precision of the analysis does not make a quantitative comparison feasible.