ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
W. Baer
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 57-60
Technical Paper | doi.org/10.13182/NSE61-A25930
Articles are hosted by Taylor and Francis Online.
A measurement of the epithermal radiative capture in U238 has been carried out in a natural UO2-fueled blanket cluster of the nuclear mock-up of PWR Core 1. Analysis indicates that a substantial increase (∼20%) in epithermal captures in a natural uranium metal plate fuel cluster should occur in the fuel elements adjacent to a wide intercluster water channel. The experiment shows that the captures in a cylindrical UO2 fuel element at the edge of the bundle is only 7% greater than in a neighboring fuel element. However, the radial distribution of captures in the first fuel rod shows that the captures near the wide intercluster water channel are 65% greater than at an equivalent position on the side of the rod away from the water channel. Calculations of the relative epithermal U238 captures in the cluster have shown that diffusion theory predicts the spatial dependence of the captures in the interior of the cluster but fails near the edge of the bundle. Monte Carlo analysis confirms the observed increase in the captures in a fuel rod at the edge of the bundle, although the precision of the analysis does not make a quantitative comparison feasible.