ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
M.-L. Giacri-Mauborgne, D. Ridikas, M. B. Chadwick, P. G. Young, W. B. Wilson
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 33-40
Technical Paper | doi.org/10.13182/NSE06-A2592
Articles are hosted by Taylor and Francis Online.
This paper describes model calculations and nuclear data evaluations of photonuclear reactions on actinides such as 235U, 238U, 237Np, and 239Pu for incident photon energies from the reaction threshold up to 20 MeV. The calculations are done using the GNASH code, including the giant-dipole resonance for photoabsorption. The emission of secondary particles is computed using a preequilibrium theory, together with an open-ended sequence of the compound nucleus decay using the Hauser-Feschbach theory. The accuracy of the calculated and evaluated cross sections is assessed through extensive comparison with measured cross sections. This work also summarizes evaluation methods used to create actinide photonuclear files for the forthcoming ENDF/B-VII database, which will facilitate radiation transport studies related to photonuclear reactions in a number of technologies including production of photoneutrons and photofission fragments in electron accelerators, shielding studies, and nondestructive detection of nuclear material in particular.