ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
D. P. Barry, M. J. Trbovich, Y. Danon, R. C. Block, R. E. Slovacek, G. Leinweber, J. A. Burke, N. J. Drindak
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 8-25
Technical Paper | doi.org/10.13182/NSE06-A2590
Articles are hosted by Taylor and Francis Online.
Neodymium is a 235U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross-section data of neodymium.Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute (RPI) linear accelerator (LINAC) laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15- and 25-m flight stations, respectively, with 6Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the SAMMY multilevel R-matrix Bayesian code.The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 b that is ~7% lower than that obtained with the ENDF/B-VI parameters. The current measurements significantly reduce the uncertainties of the resonance parameters when compared with previously published parameters.