ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. A. Hasnain, D. Okrent
Nuclear Science and Engineering | Volume 9 | Number 3 | March 1961 | Pages 314-322
Technical Paper | doi.org/10.13182/NSE61-A25882
Articles are hosted by Taylor and Francis Online.
The performance of some blanket designs is studied using economically optimized cycling based on a simple economics model. For an 800-liter core fast reactor having a 45-cm radial blanket and an average core power of 1-Mw per liter, it appears that the outermost blanket elements make enough plutonium to pay for the cost of their fabrication and processing, unless the core power density falls well below the expected value. A cyclic motion of elements in the inward radial direction has little effect on the economics if optimum cycling is followed. Moving the blanket elements may have engineering advantages however, such as a uniform buildup and burnup, and less variation in power locally with time. A paste blanket with radial inward motion and axial mixing has a similar behavior. Inclusion of moderating material in a fast reactor blanket is not promising for a high-power density reactor using optimum cycling, but it may prove valuable if blanket fluxes get very low or the residence times of the blanket elements are limited.