ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Joe R. Beeler, Jr.
Nuclear Science and Engineering | Volume 9 | Number 1 | January 1961 | Pages 35-40
Technical Paper | doi.org/10.13182/NSE61-A25862
Articles are hosted by Taylor and Francis Online.
The validity of using the homogenization approximation in a lattice end-leakage calculation was studied in a series of Monte Carlo scattering order analysis experiments. A method for using the homogenization approximation in Monte Carlo end-leakage calculations is described. The analysis indicated that, even with hydrogen moderation, a treatment of all collision sequences of fifth order or less in a faithful mock-up of the lattice was required to describe the end-leakage fraction accurately. In the case of nonhydrogenous moderators it was necessary to consider longer sequences. When all collision sequences of 10th order or less were treated in a faithful mock-up of the lattice, 80% of the total end-escape fraction was accounted for in a rigorous manner and a good estimate of the end-escape spectrum was obtained down to 25 kev. Escape fraction and spectrum estimates based on numerical integration over all scattering sequences of second order or less in a faithful lattice mock-up are shown to be misleading. The two essential factors which caused the lattice and homogeneous model results to differ were the smaller mean free path and larger absorption cross section of the homogeneous model and the directional character of the mean free path and absorption cross section in the lattice. As a result, longer collision sequences are required, on the average, to produce escape in the homogeneous model than in the lattice.