ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
F. T. Gould, T. I. Taylor, W. W. Havens, Jr., B. M. Rustad, E. Melkonian
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 453-466
Technical Paper | doi.org/10.13182/NSE60-A25832
Articles are hosted by Taylor and Francis Online.
The absorption cross sections of gold and boron have been measured at long neutron wavelengths with a single crystal spectrometer. Mica along with microcrystalline filters of Be and BeO was used as a monochromator for the wavelength range from 4 to 8.75 Å, and for longer wavelengths a mechanical monochromator was used to remove second and higher order neutrons. Neutron beams with negligible higher order contamination were obtained with a wavelength resolution Δλ/λ of 0.018. The total cross section of gold for wavelengths from 5 to 11.5 Å is σt = (54.56 ± 0.09) λ (0.46 ± 0.67) barns. Evaluation of the thermal neutron (2200 m/sec) absorption cross sections gave (98.8 ± 0.3) barns for gold and (7.56 ± 6) barns for boron in glass plates for use as secondary standards.