ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Gerald P. Calame
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 400-404
Technical Paper | doi.org/10.13182/NSE60-A25820
Articles are hosted by Taylor and Francis Online.
The conventional calculation of power peaking near water gaps assumes an abrupt change in the neutron spectrum at a gap-core interface. The assumption can be seriously in error, and can result in discrepancies of 50% between calculated and experimental peaking values. In this paper, a position-dependent spectrum is obtained by the use of diffusion theory which, when used in peaking calculations, reduces the discrepancy between theory and experiment to the order of 5–10% or less. Recipes based on the position-dependent spectrum are obtained for the specification of position-dependent cross sections which may be used in standard diffusion theory codes. The use of these cross sections in the codes results in an estimate of power peaking factors which represents a considerable improvement over the results given by conventional calculations.