ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. D. Hickman, J. A. Bistline, L. A. MacNaughton
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 381-392
Technical Paper | doi.org/10.13182/NSE60-A25818
Articles are hosted by Taylor and Francis Online.
A series of fifteen experiments were carried out on an 8 × 30 × 32 in. core in the Pressurized Critical Assembly at KAPL. In twelve of these experiments, 0.030-in. boron stainless steel septa bisected the 8-in. dimension. These septa contained various weight per cent B10. In the remaining three experiments, there were no boron-stainless steel septa in the core. The eigenvalues and neutron density distributions were compared with values which were calculated using Deutsch cross sections and “Thin Region Theory.” The eigenvalues which were calculated were within one per cent of the experimental values, with a spread of approximately one per cent. For all the cores, the calculated eigenvalues were lower than the experimental values. Analyses of the neutron density distributions showed the calculated results in fairly good agreement with the experimental results. In all cases, this agreement was as good for the cores which contained the boron septa as for the ones which did not. It therefore appears that the boron has been well represented by “Thin Region Theory,” and that the main discrepancies between calculated and experimental values are due to the inadequacies of adapting the Deutsch scheme to these cores.