ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. D. Hickman, J. A. Bistline, L. A. MacNaughton
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 381-392
Technical Paper | doi.org/10.13182/NSE60-A25818
Articles are hosted by Taylor and Francis Online.
A series of fifteen experiments were carried out on an 8 × 30 × 32 in. core in the Pressurized Critical Assembly at KAPL. In twelve of these experiments, 0.030-in. boron stainless steel septa bisected the 8-in. dimension. These septa contained various weight per cent B10. In the remaining three experiments, there were no boron-stainless steel septa in the core. The eigenvalues and neutron density distributions were compared with values which were calculated using Deutsch cross sections and “Thin Region Theory.” The eigenvalues which were calculated were within one per cent of the experimental values, with a spread of approximately one per cent. For all the cores, the calculated eigenvalues were lower than the experimental values. Analyses of the neutron density distributions showed the calculated results in fairly good agreement with the experimental results. In all cases, this agreement was as good for the cores which contained the boron septa as for the ones which did not. It therefore appears that the boron has been well represented by “Thin Region Theory,” and that the main discrepancies between calculated and experimental values are due to the inadequacies of adapting the Deutsch scheme to these cores.