ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
UM conducts molten salt experiment
For 2,300 hours, the molten salt pump Shaft Seal Test Facility (SSTF) operated at the University of Michigan’s Thermal Hydraulics Laboratory, according to an article from UM. The large-scale experiment was designed to evaluate shaft seal performance in high-temperature pump systems. Fewer than 10 facilities worldwide have successfully operated fluoride or chloride salts for more than 100 hours using over 10 kilograms of material.
J. E. Ayer, R. M. Mayfield, D. R. Schmitt
Nuclear Science and Engineering | Volume 8 | Number 3 | September 1960 | Pages 274-276
Technical Paper | doi.org/10.13182/NSE60-A25810
Articles are hosted by Taylor and Francis Online.
Gloveboxes are frequently used for the protection of personnel and containment of an inert atmosphere within which operations upon pyrophoric or physiologically hazardous materials are performed. Leakage or diffusion of water vapor through gross leaks or through gloves may necessitate purification of the inert atmosphere. Since the required capacity of the purification system involves a summation of in leakage from all sources, quantitative information on the role of the glove as a contributing factor is of importance. This paper is intended to indicate the engineering application of an investigation into the role of the permeability of glove materials. Water vapor permeability through various glove materials has been determined mathematically as a function of film thickness, partial pressure of water vapor differential across the film, film surface area, and the permeability constants for a particular “compound.” Calculations indicate that a sample glove exposed to air at 75°F and 50% relative humidity on one surface and to a very low humidity on the other side will contribute 0.22 g of water vapor per day to a glovebox system (1). The same glove in use by an operator will contribute up to 2.8 g of water per day due to the increased partial pressure of water vapor differential between the two glove surfaces. These calculations allow the quantitative determination of water permeation through gloves and its effect upon the desired purity or operating dew point of a protective atmosphere system and its purification equipment.