ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
From renaissance to reality: Infrastructure for a global nuclear fuel cycle
Dale Klein
This article was adapted from the author’s speech during a plenary at the 21st International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2025), San Antonio, Texas, July 2025.
There has been a lot of discussion lately about reforming the Nuclear Regulatory Commission. But I want to be clear: When it comes to nuclear safety and security, there is no place for partisan politics. I support efforts to streamline regulatory processes, but the independence and integrity of the NRC must remain sacrosanct. If we are serious about expanding nuclear power and reclaiming our global leadership in nuclear technology, having a strong independent regulator is fundamental.
Right now, we’re on the edge of a global nuclear resurgence driven by rising demand from data centers, growing concerns about energy security, and the need to decarbonize industry.
Jan Dufek, Waclaw Gudowski
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 274-283
Technical Paper | doi.org/10.13182/NSE06-2
Articles are hosted by Taylor and Francis Online.
A new adaptive stochastic approximation method for an efficient Monte Carlo calculation of steady-state conditions in thermal reactor cores is described. The core conditions that we consider are spatial distributions of power, neutron flux, coolant density, and strongly absorbing fission products like 135Xe. These distributions relate to each other; thus, the steady-state conditions are described by a system of nonlinear equations. When a Monte Carlo method is used to evaluate the power or neutron flux, then the task turns to a nonlinear stochastic root-finding problem that is usually solved in the iterative manner by stochastic optimization methods. One of those methods is stochastic approximation where efficiency depends on a sequence of stepsize and sample size parameters. The stepsize generation is often based on the well-known Robbins-Monro algorithm; however, the efficient generation of the sample size (number of neutrons simulated at each iteration step) was not published yet. The proposed method controls both the stepsize and the sample size in an efficient way; according to the results, the method reaches the highest possible convergence rate.