ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Richard L. Caldwell, William R. Mills, Jr., John B. Hickman, Jr.
Nuclear Science and Engineering | Volume 8 | Number 3 | September 1960 | Pages 173-182
Technical Paper | doi.org/10.13182/NSE60-A25797
Articles are hosted by Taylor and Francis Online.
Gamma rays in the energy range 2 to 11 Mev produced by inelastic scattering of 14-Mev neutrons by nine elements were measured at a mean angle of 90 deg. Excluding carbon and oxygen, the maximum energy gamma rays varied from about 8 Mev for phosphorus to about 10.5 Mev for magnesium and 11 Mev for silicon. Resolved gamma rays were observed from carbon (4.43 Mev), oxygen (6.1 and 7 Mev), silicon (1.78 Mev), aluminum (2.2 Mev), phosphorus (2.2 Mev), sulfur (2.2 Mev), and calcium (3.7 Mev). In the energy range 4–6 Mev there are indications of individual gamma rays in silicon; no resolved gamma-ray peaks above 2 Mev were observed for iron and magnesium. Except for carbon and oxygen, the intensity of gamma rays decreases with increase in energy and varies from about 3 to 9 times higher at 2–3 Mev than at 5–6 Mev. Gamma-ray production cross sections are given for each element, relative to the known cross section for carbon. The ratio of the integrated cross section for gamma-ray production above 2 Mev to the nonelastic neutron cross section varies from 0.59 for sulfur to 0.99 for iron.