ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
Hiroaki Ogawa, Kiyoshi Kiuchi
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 236-241
Technical Paper | doi.org/10.13182/NSE06-A2578
Articles are hosted by Taylor and Francis Online.
Heavy rare gases like Xe have the highest abundance as fission products formed with dependence on the burnup of nuclear fuels. The interaction between heavy rare gases and low-energy electrons excited by the irradiation effect is very important for understanding the gas release mechanism and for developing the collecting method of radioactive fission product gases. Two types of plasma-testing apparatuses for the opened and closed low-energy plasmas were arranged using the radio frequency exciting source. The excitation behavior was evaluated by measuring the density and the temperature of the excited electrons. The electron density in the opened plasma increased with increase of the ionization energy of each rare gas. However, the electron density in the closed plasma of heavy rare gases (Ar, Kr, and Xe) was enhanced nearly a thousand times higher than that of light rare gases (Ne and He). The difference was interpreted as based on the cross section for energy transfer to the low-energy electron formed by the multisputtering effect on wall surfaces in the closed plasma.