ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yoshiro Asahi, Tomoaki Suzudo, Nobuyuki Ishikawa, Toru Nakatsuka
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 219-235
Technical Paper | doi.org/10.13182/NSE06-A2577
Articles are hosted by Taylor and Francis Online.
An analysis of a boiling water reactor turbine trip was performed with the THYDE-NEU code. In spatial kinetics, reactivity was not used since the three-dimensional transient diffusion equation was solved with the implicit direct integration method. The plant was treated as a closed coolant system, and hence, it was necessary to cope with thermal-hydraulic behaviors at pressures as low as the atmospheric pressure. At low pressures, nonlinearity of the thermal-hydraulic equation is enhanced, and hence, a thermal nonequilibrium model is required. To satisfy the measured initial pressure distribution within the reactor, it was necessary to have the moisture separator model and to account for a reversible pressure drop at a junction with a flow area change. Among the parameters in THYDE-NEU is in the thermal nonequilibrium model in addition to C1 and C2 regarding the manner in which to express the coolant density used in the table look-up of cross sections. For a pair of C1 and C2, it is possible to find parametrically a value of , namely, C, so that THYDE-NEU can reproduce the experimental fact that the core-averaged local power range monitor output RAPRM reached 0.95 at 0.63 s to generate a scram signal. One of the calculations with C was compared with the experiment. It was shown that the spatial kinetics results are sensitive to the temporal behavior of the bypass valve opening. Among the assumptions in use, those to be scrutinized before further performing sensitivity calculations were indicated.