ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 180-196
Technical Paper | doi.org/10.13182/NSE06-A2574
Articles are hosted by Taylor and Francis Online.
Variational perturbation theory is applied to internal interface perturbations in neutral-particle inhomogeneous transport problems. The leakage from a radioactive system is the quantity of interest. The Schwinger and Roussopolos variational functionals are used with volume- and surface-integral formulations of the integrals of perturbed quantities. In numerical one-dimensional spherical tests of source radius perturbations, the Roussopolos functional in the surface-integral formulation worked better when the source was large, and the Schwinger functional in the volume-integral formulation worked better when the source was small. A new variational functional is presented that formally allows a combination of the Schwinger and Roussopolos functionals; the contribution of each to the total estimate is adjusted with a parameter introduced in one of the trial functions. When the parameter is correctly chosen, the new functional is generally more accurate than either the Schwinger or Roussopolos functional alone. An analytic monodirectional slab transport problem is also considered.