ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Lawrence Dresner
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 419-424
Technical Paper | doi.org/10.13182/NSE60-A25739
Articles are hosted by Taylor and Francis Online.
The second fundamental theorem of reactor theory states that a good estimate of the non-leakage probability from a bare reactor is given by the Fourier transform of the infinite medium kernel evaluated at the asymptotic buckling of the reactor. Inönü has investigated the validity of this theorem for the one-velocity slab reactor with isotropic scattering by means of a variational technique. He finds its use gives very good results even for quite small reactors with dimensions of the order of a few mean free paths. In the present paper the effect of anisotropy in the scattering on the validity of the theorem is investigated by a variation-iteration technique. It is concluded that the theorem is, in general, less reliable the more anisotropic the scattering.