ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Anfield Energy to start construction of Utah uranium mine
British Columbia-based Anfield Energy has scheduled a groundbreaking on November 6 at its uranium and vanadium Velvet-Wood mine, located in southeastern Utah’s Lisbon Valley. According to Corey Dias, the company’s CEO, it will be "more than a groundbreaking—it’s a bold declaration of Anfield’s readiness to help fuel the American nuclear renaissance.”
Lawrence Dresner
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 419-424
Technical Paper | doi.org/10.13182/NSE60-A25739
Articles are hosted by Taylor and Francis Online.
The second fundamental theorem of reactor theory states that a good estimate of the non-leakage probability from a bare reactor is given by the Fourier transform of the infinite medium kernel evaluated at the asymptotic buckling of the reactor. Inönü has investigated the validity of this theorem for the one-velocity slab reactor with isotropic scattering by means of a variational technique. He finds its use gives very good results even for quite small reactors with dimensions of the order of a few mean free paths. In the present paper the effect of anisotropy in the scattering on the validity of the theorem is investigated by a variation-iteration technique. It is concluded that the theorem is, in general, less reliable the more anisotropic the scattering.