ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Ricardo Diniz, Adimir dos Santos
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 125-141
Technical Paper | doi.org/10.13182/NSE04-69
Articles are hosted by Taylor and Francis Online.
A reactor noise approach has been successfully performed at the IPEN/MB-01 research reactor facility to determine experimentally the effective delayed neutron parameters i and i in a six-group model. The method can be considered a novel one because it exploits the very low-frequency domain of the spectral densities. The proposed method has some advantages to other in-pile methods since it does not perturb the reactor system and consequently does not "excite" any sort of harmonic modes. As a by-product and a consistency check, the eff parameter was obtained without the need of the Diven factor and power normalization, and it is in excellent agreement with independent measurements. The theory/experiment comparison shows that for the abundances the JENDL3.3 presents the best performance, while for the decay constants the revised version of ENDF/B-VI.8 shows the best agreement. The best performance for the eff determination is obtained with JENDL3.3. In contrast, ENDF/B-VI.8 and its revised version performed at Los Alamos National Laboratory overestimate eff by as much as 4%. The eff results of this work totally support the proposal by Sakurai and Okajima to reduce the thermal delayed neutron yield of 235U.