ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ricardo Diniz, Adimir dos Santos
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 125-141
Technical Paper | doi.org/10.13182/NSE04-69
Articles are hosted by Taylor and Francis Online.
A reactor noise approach has been successfully performed at the IPEN/MB-01 research reactor facility to determine experimentally the effective delayed neutron parameters i and i in a six-group model. The method can be considered a novel one because it exploits the very low-frequency domain of the spectral densities. The proposed method has some advantages to other in-pile methods since it does not perturb the reactor system and consequently does not "excite" any sort of harmonic modes. As a by-product and a consistency check, the eff parameter was obtained without the need of the Diven factor and power normalization, and it is in excellent agreement with independent measurements. The theory/experiment comparison shows that for the abundances the JENDL3.3 presents the best performance, while for the decay constants the revised version of ENDF/B-VI.8 shows the best agreement. The best performance for the eff determination is obtained with JENDL3.3. In contrast, ENDF/B-VI.8 and its revised version performed at Los Alamos National Laboratory overestimate eff by as much as 4%. The eff results of this work totally support the proposal by Sakurai and Okajima to reduce the thermal delayed neutron yield of 235U.