ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. C. Luu, J. L. Friar, A. C. Hayes
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 98-105
Technical Paper | doi.org/10.13182/NSE06-A2567
Articles are hosted by Taylor and Francis Online.
In high neutron flux environments where isomers can be strongly populated by nucleonic reactions, isotope abundances from reaction network chains can be affected by the population of nuclear isomers. At high temperatures and densities, there is the additional possibility of populating these isomers electromagnetically. Here, we examine the rates for electromagnetic excitation of the isotopes of several isomers of interest both in astrophysics and applied physics (e.g., 235U, 193Ir, and 87,88Y). We consider six possible electromagnetic processes, namely, photoabsorption, inverse internal conversion, inelastic electron scattering, coulomb excitation, and (,') and (e,e') reactions. We find that for plasma temperatures kT ~ 1 to 10 keV, the electromagnetic reactions rates are negligible. Thus, we conclude that reaction network calculations do not need to include the possibility of electromagnetically exciting nuclear isomers. This is true in both stellar and terrestrial thermonuclear explosions, as well as in plasma conditions expected at the National Ignition Facility.