ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Lewi Tonks
Nuclear Science and Engineering | Volume 6 | Number 3 | September 1959 | Pages 202-213
Technical Paper | doi.org/10.13182/NSE59-A25660
Articles are hosted by Taylor and Francis Online.
A quantitative but simple theory of the control effect of a uniformly distributed set of thermal poison elements in a hydrogen-moderated bare reactor core has been developed. Starting with plane parallel poison sheets, a zero-flux boundary condition, in a slab core and applying Fourier analysis, it has been possible to generalize to any boundary condition, to orthogonally intersecting sets of poison sheets in an infinite rectangular core, to control crosses, and cylindrical rods in regular array, to finite rectangular cores, and to finite cylindrical cores. Each element of the control array is associated with a cross-sectional area Ac within the core and within this area is an easily determined effective “absorption area” C. To a rather good accuracy the critical k of the controlled core is greater than the k of the uncontrolled core by the ratio Ac/(Ac − C). In this the theoretically based conclusion substantiates the intuitionally based and empirically confirmed methods worked out by Greebler (1), and by Pearlstein, Ruane, and Storm (2), and furnishes correction terms.