ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. F. Ruane, M. L. Storm
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 119-127
Technical Paper | doi.org/10.13182/NSE59-A25641
Articles are hosted by Taylor and Francis Online.
Epithermal nonabsorption probabilities for neutron absorbers are important parameters in the evaluation of control rod worths. In this article, the average epithermal nonabsorption probability () for hafnium slabs is calculated by two different methods: (1) Within the framework of a specific two-dimensional, three-energy-group calculational scheme, an empirical value of is determined which gives agreement with experimental rod worths. (2) Based on available microscopic cross-section data for the hafnium isotopes, the value of is calculated and compared with the empirical value obtained above. The values of obtained by these different methods for 0.1 in. and 0.2 in. thick slabs agree to within 10 per cent, thus verifying the physical reasonableness of the empirical probabilities.