ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T. F. Ruane, M. L. Storm
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 119-127
Technical Paper | doi.org/10.13182/NSE59-A25641
Articles are hosted by Taylor and Francis Online.
Epithermal nonabsorption probabilities for neutron absorbers are important parameters in the evaluation of control rod worths. In this article, the average epithermal nonabsorption probability () for hafnium slabs is calculated by two different methods: (1) Within the framework of a specific two-dimensional, three-energy-group calculational scheme, an empirical value of is determined which gives agreement with experimental rod worths. (2) Based on available microscopic cross-section data for the hafnium isotopes, the value of is calculated and compared with the empirical value obtained above. The values of obtained by these different methods for 0.1 in. and 0.2 in. thick slabs agree to within 10 per cent, thus verifying the physical reasonableness of the empirical probabilities.