ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. L. Garabedian, C. B. Leffert
Nuclear Science and Engineering | Volume 6 | Number 1 | July 1959 | Pages 26-32
Technical Paper | doi.org/10.13182/NSE59-A25622
Articles are hosted by Taylor and Francis Online.
A technique is exhibited which permits an investigation of the changes in flux shape which occur when reactivity is inserted locally in an inhomogeneous reactor system and the power level rises. Thus, transient flux shapes at any time may be found as well as the asymptotic flux shape which is eventually attained. The reactor kinetics study in this article is motivated by a method of harmonics which does not employ the conventional assumption of separability of the flux into a product of a function of position alone and a function of time alone. From the point of view of practical applications the method is restricted to systems of rather simple geometry in which the slowing down is everywhere uniform and in which there are no nonlinear feedback effects.