ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Hui Zhang, E. E. Lewis
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 29-36
Technical Paper | doi.org/10.13182/NSE06-A2560
Articles are hosted by Taylor and Francis Online.
The variational nodal method is generalized to include R-Z geometry. Spherical harmonic trial functions in angle are combined with orthonormal polynomials in space to discretize the multigroup equations. The nodal response matrices that result correspond to volumes that are toroids, with rectangular cross sections, except along the centerline where the volumes are cylinders. The R-Z response matrix equations are implemented as modifications to the Argonne National Laboratory code VARIANT, and existing iterative methods are used to obtain numerical solutions. The method is tested in P1, P3, and P5 approximations, and results are presented for both a one-group fixed source and a two-group eigenvalue problem.