ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Guy H. Cannon
Nuclear Science and Engineering | Volume 5 | Number 4 | April 1959 | Pages 219-224
Technical Paper | doi.org/10.13182/NSE59-A25587
Articles are hosted by Taylor and Francis Online.
Heat output of a nuclear reactor is independent of temperature and is limited only by the rate at which heat can be removed from the system. Means are suggested for improving the heat removal capability of a reactor by redistributing the fuel, shaping the heat-transfer surface, and directing the flow of coolant in a manner such as to cause all of the increased heat-transfer surface to operate at the highest permissible temperature and thereby maximize the temperature difference applicable for heat-transfer. With “Calder Hall” as a reference and employing the same materials of construction and proportions (fuel, cladding, moderator, coolant), and using the same operating conditions (coolant pressure, coolant pumping power, maximum cladding temperature), this paper suggests ways of fabricating equivalent magnesium-clad wedge S-shape fuel plates and using them in clumps for heating more coolant to higher temperature. The indicated result is greatly increased power production because of increased coolant throughput at increased outlet temperature and improved thermal efficiency.