ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
H. A. Sandmeier, D. M. O’Shea
Nuclear Science and Engineering | Volume 5 | Number 3 | March 1959 | Pages 186-189
Technical Paper | doi.org/10.13182/NSE59-A25575
Articles are hosted by Taylor and Francis Online.
From the time dependent heat conduction and temperature distribution, an expression is derived for the time constant in a cylindrical fuel pin and cladding with axial coolant flow. The power production and the inlet temperature are functions of time. In the radial direction perfect mixing of the coolant is assumed. The average coolant temperature in a region is the average between inlet and outlet temperature assuming a linear rise in the axial direction. The set of partial differential equations can be solved by means of Laplace transform. The reciprocal of the roots of the characteristic equation for the temperature in the transform domain represents the time constants. The smallest root represents the dominant transient time constant. This dominant time constant is compared with a qualitative expression for the thermal relaxation time of a reactor after a power change given by Bethe. The numerical example used is a fuel pin in EBR-I Mark III in flowing NaK coolant at a core power generation of 1 Mw at various coolant flow conditions.