ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
H. C. Corben
Nuclear Science and Engineering | Volume 5 | Number 2 | February 1959 | Pages 127-131
Technical Paper | doi.org/10.13182/NSE59-A25565
Articles are hosted by Taylor and Francis Online.
The space-independent pile kinetic equations are solved to give the excess reactivity explicitly in terms of the rate of change of power and an integral over the past history of the power, the precursor densities being eliminated algebraically from the equations. The need for digital computations for determining the reactivity from a given power trace is thereby reduced. The solution is applicable to arbitrary variations of power with time and is examined in detail for the case of small damped oscillations, where it leads to simple algebraic expressions for the gain and phase angle. The behavior of the reactivity as a function of time is also computed for the case of a power fluctuation occurring during a short time interval, for a power trace which increases exponentially and then stays constant, and for a rapidly decaying power burst.