ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Wenchao Zhang, Robin P. Gardner
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 361-373
Computer Code Abstract | doi.org/10.13182/NSE05-A2556
Articles are hosted by Taylor and Francis Online.
A Monte Carlo simulation code, CEARPGA II, has been developed to generate the complete set of library spectra that are required for the application of the Monte Carlo-Library Least-Squares approach in prompt-gamma-ray neutron activation analysis. Compared to the previous version, the CEARPGA I code, several important improvements have been made including eliminating the "big weight" problem by implementing the Analog Linear Interpolation technique, generating the appropriate detector response functions using improved simulation models that account for NaI detector nonlinearity and flat continua, generating the neutron activation backgrounds by directly sampling detector-activated gamma-ray energies, generating the natural background libraries by interpolating the energy-score tables, and tracking the annihilation gamma rays from the pair production interaction that occurs outside the detector. The coal sample spectrum calculated with the CEARPGA II code is benchmarked against those calculated from the CEARPGA I code, the MCNP code, and experimentally measured data.