ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Sanjoy Mukhopadhyay
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 348-354
Technical Note | doi.org/10.13182/NSE05-A2554
Articles are hosted by Taylor and Francis Online.
The most desirable features in a spectroscopic material are high sensitivity and high resolution. Cerium-activated crystals of lanthanum bromide (LaBr3:Ce) have higher sensitivity and better spectroscopic resolution than sodium/cesium iodide (NaI/CsI) crystals because of higher density (5.29 g/cm3), faster decay time (35 ns), minimal afterglow, and larger (63 000 photons/MeV) and more linear light output (6% nonlinearity over the energy range between 60 and 1332 keV). Of all the recent scintillator materials manufactured to date, LaBr3, with cerium activators, is one of the most promising for high-resolution, fast timing techniques as applied to medical image reconstructions or associated particle imaging.