ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. D. Arnold
Nuclear Science and Engineering | Volume 3 | Number 6 | June 1958 | Pages 707-725
Technical Paper | doi.org/10.13182/NSE58-A25506
Articles are hosted by Taylor and Francis Online.
The buildup of the important transmutation products in irradiated uranium was calculated. Significant quantities of such products are produced upon irradiation with pile neutrons, using an MTR geometrical configuration as reference. These quantities are further increased with subsequent recycle through power reactors. The nuclides are U236, U237, Np237, and Pu238. Variables included in this study were: irradiation levels of 6 × 1019 to 3 × 1021 n/cm2; effect of recycle in the range 1 to 400 cycles and infinite recycle (or steady state); initial fuel enrichment (where applicable) in the range of 0.5–3.0% U235; and the effect of fraction of U236 removed by a gaseous diffusion plant reconcentration of U235 in the range 0–100% removal. This last variable depends on the operational characteristics of the diffusion plant. The buildup of transmutation products may have many appreciable effects on the design and operation of fuel recycle. The decay time required will increase as a result of higher concentrations of U237; chemical separation plants may be required to separate Np237 as well as uranium, plutonium, and fission products; and the buildup of Pu238 in the plutonium product may create additional biological or handling problems. An important conclusion of this work is that all problems resulting from isotope buildup in the U235 buildup chain may be decreased in seriousness by approximately an order of magnitude with removal of about 25% of the U236 by re-enrichment in a gaseous diffusion plant.