ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
T. R. Allen, J. Gan, J. I. Cole, S. Ukai, S. Shutthanandan, S. Thevuthasan
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 305-312
Technical Paper | doi.org/10.13182/NSE05-A2549
Articles are hosted by Taylor and Francis Online.
An oxide-dispersion-strengthened (ODS) martensitic steel 9Cr-ODS was irradiated with 5-MeV Ni ions at 500°C at a dose rate of 1.4 × 10-3 dpa/s to doses of 5, 50, and 150 dpa. The ODS steel has been designed for use in higher-temperature energy systems. However, the radiation effects are not fully characterized, particularly to high doses. Dense dislocations, precipitates, and yttrium-titanium oxide particles dominated the microstructure of 9Cr-ODS for both the unirradiated and irradiated cases with no dislocation loops observed. No voids were detected for doses up to 150 dpa. The average size of the oxide particles, whose size is approximately described by a lognormal distribution, slightly decreased with dose from ~12 nm for the unirradiated case to ~9 nm at 150 dpa. The decrease in size follows a square root of dose dependency, indicating the effect is radiation induced. The decrease in size is not expected to have a detrimental effect on high-temperature strength, even to extremely high dose.